Etude Structurale des Systèmes Ln₂S₃-GeS₂

ANNICK MICHELET, ALAIN MAZURIER, GASTON COLLIN, PIERRE LARUELLE, ET JEAN FLAHAUT

Laboratoire de Chimie Structurale, Associé au CNRS No. 200, Faculté des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire, Paris 6°, France

Received February 1, 1974

Dans les systèmes formés entre les sulfures Ln_2S_3 des terres rares et GeS₂, trois types de phases de structures nouvelles ont été observées: $Ln_4Ge_3S_{12}$, rhomboédriques R3c; Ln_2GeS_5 , monocliniques $P2_1/a$; et $Ln_6Ge_{2.5}S_{14}$, surstructures hexagonales $P6_3$ de la structure de Ce₆Al_{10/3}S₁₄. Description des structures.

Les atomes de germanium sont à l'intérieur de tétraèdes isolés d'atomes de soufre. Les atomes de terres rares sont dans des prismes trigonaux de soufre, avec deux ou trois atomes de soufre supplémentaires dans le plan équatorial. Souvent les distances équatoriales Ln-S sont très longues. Le composé La_2GeS_5 appartient à la série des composés à deux anions, avec des feuillets de composition [LaS], alternant avec des tétraèdres GeS₄.

In the systems formed between the Ln_2S_3 sulfides of the rare earth and GeS₂, three kinds of new crystal structures are observed: $Ln_4Ge_3S_{12}$, rhombohedral R3c; Ln_2GeS_5 , monoclinic P2₁/a; $Ln_6Ge_{2.5}S_{14}$, hexagonal superstructure P6₃ of the Ce₆Al_{10/3}S₁₄ structure. The three structures are established from single crystals studies.

Germanium atoms are inside isolated tetrahedra of sulfur atoms. Lanthanide atoms are inside two- or three-capped trigonal prisms, often with very long equatorial Ln-S distances. The La_2GeS_5 compound belongs to the series of two anions compounds, with layers of [LaS] composition alternating with GeS₄ tetrahedra.

Introduction

Les systèmes Ln_2S_3 -GeS₂ ont été étudiés systématiquement pour tous les éléments des terres rares, sur des produits préparés dans des conditions variées. Trois familles de composés ternaires ont été mises en évidence, auxquelles nous avons assigné les formules générales suivantes:

$$Ln_4Ge_3S_{12}$$
 (ou $2Ln_2S_3 \cdot 3GeS_2$)
 Ln_2GeS_5 (ou $Ln_2S_3 \cdot GeS_2$)
 $Ln_6Ge_{2.5}S_{14}$ (ou $6Ln_2S_3 \cdot 5GeS_2$).

Ces composés n'existent que pour certains des éléments des terres rares: $Ln_4Ge_3S_{12}$ du lanthane au gadolinium, Ln_2GeS_5 pour le lanthane seul, $Ln_6Ge_{2.5}S_{14}$ du cérium à

Copyright © 1975 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain l'holmium. L'yttrium ne donne qu'une combinaison de ce dernier type. Les sulfures des terres rares lourdes ne se combinent pas au sulfure de germanium (Tableau I).

Enfin une quatrième famille de composés, de formule générale $Ln_6Ge_3S_{14}$, a été obtenue. Dans celle-ci, le tiers des atomes de germanium est à l'état divalent, et ces composés ne sont pas situés sur les sections Ln_2S_3 -GeS₂, mais à l'intérieur des ternaires Ln-Ge-S. Ces composés sont décrits par ailleurs (4, 14) et ne seront que brièvement évoqués ici, en raison de leurs relations avec les composés isostructuraux de la famille $Ln_6Ge_{2,5}S_{14}$.

A propos de chacune de ces familles, nous effectuerons un bref rappel des systèmes dans lesquels le silicium tétravalent prend la place du germanium tétravalent, systèmes qui ont

Ln.GesS.	La	Ce	Pr	Nd (/)	Sm	Eu	Gd	Tb	Dy	Но	Er Y
2114 Cl 03 5 12							-				
$Ln_4Si_3S_{12}$				(7)							
Ln ₂ GeS ₅	(8)	(15)				- - - -					
Ln ₂ SiS ₅		(8)								
$Ln_6Ge_{2.5}S_{14}$				(4)		, , , ,		(4)			(4)
Ln ₆ Si _{2.5} S ₁₄	·						(4	4)			(4)

TABLEAU I

" Les références sont indiquées par des nombres entre parenthèses.

été étudiés en partie par Perez (6-8) et en partie par nous-mêmes (4, 8, 14). On y rencontre les mêmes trois familles de composés isostructurales des précédentes: $Ln_4Si_3S_{12}$, Ln_2SiS_5 , et $Ln_6Si_{2.5}S_{14}$. La quatrième famille qui ferait intervenir du silicium divalent, ne se retrouve pas ici en accord avec la faible stabilité de l'état d'oxydation +2 du silicium.

Notons qu'aucune combinaison de l'europoium trivalent n'a été obtenue. (Tableau I.)

Chacune de ces familles possède une structure cristalline qui lui est particulière, et que nous avons déterminée sur monocristaux. Ces structures ont été décrites plus en détail par ailleurs, et nous n'en donnerons ici qu'une brève description, sans envisager les méthodes qui ont été utilisées pour les obtenir.

Préparation des Echantillons

Tous les produits sont préparés en ampoules de silice scellées sous vide, par union du sulfure de terre rare Ln_2S_3 , du germanium et du soufre. Le germanium provient de lingots de la Société Générale Métallurgique de Hoboken. Les sulfures de terres rares sont préparés par action de l'hydrogène sulfuré sur les oxydes à 1200–1300°C, en nacelle de carbone.

Le chauffage des ampoules est très progressif pour éviter les explosions dues à une trop forte tension de vapeur provenant du soufre non encore combiné: trois jours à 550°C, un jour à 650°C, deux jours à 750°C, 12 hr à 900°C, et 2 hr à 1050°C. Le refroidissement se fait lentement dans le four. Des recuits vers 600°C permettent généralement d'obtenir des produits bien cristallisés.

Cette méthode ne permet d'obtenir que de petites quantités d'échantillons (500 mg environ). Pour des quantités plus importantes, nous avons utilisé la méthode suivante mise au point par Dagron (16).

Un tube de silice est étiré de façon à ménager trois compartiments A, B, et C (Fig. 1). Le sulfure de terre rare et le germanium (ou le silicium) finement pulvérisés et tamisés sont introduits en A tandis que le soufre est mis dans un petit tube de silice qui est placé en C selon le schéma. Après avoir fait le vide, le tube est scellé en trois.

L'ensemble est mis dans un four comportant deux zones de chauffage. Le compartiment A passe progressivement de 400 à 750°C tandis que l'extrémité C contenant le soufre est maintenue entre 200 et 400°C. (B étant à une température intermédiaire). Quand pratiquement tout le soufre s'est vaporisé

FIG. 1. Ampoule de silice utilisée pour les préparations.

et combiné, B et C sont poussés à l'intérieur du four vers 750°C tandis que l'extrémité A sort à l'extérieur: les sulfures ou le soufre qui restent éventuellement en B et C migrent en A. On scelle le tube en 1 et l'ampoule ainsi obtenue est chauffée à 1050°C sans précautions spéciales.

I. Composés Ln₄Ge₃S₁₂

I. 1. Définition de la Formule

La composition de ces phases a été difficile à établir par la seule observation des diffractogrammes de rayons X de matériaux de compositions diverses. En effet la forte volatilité de GeS₂ à haute température conduit à attribuer à ces composés une teneur en GeS₂ supérieure à celle qu'ils possèdent réellement. De ce fait, Sarsikov, Liden, et collaborateurs (3, 9) continuent de décrire ces composés sous la formule erronée Ln₂Ge₂S₇.

Nous avons initialement établi la composition de ces phases par thermogravimétrie, en nous appuyant précisément sur la volatilité élevée de GeS_2 et sur la grande stabilité thermique des sulfures Ln_2S_3 .

Un produit, de composition glogale $La_4Ge_4S_{14}$ (ou 2 $La_2S_3 \cdot 4$ GeS₂), et qui contient donc un excès de GeS₂ par rapport à la formule supposée, a été chauffé dans la balancet hermogravimétrique Ugine Eyraud, sous vide entretenu, avec une vitesse de montée en température de 150°C/hr. La courbe thermogravimétrique montre deux paliers successifs et le départ de GeS₂ se fait donc en deux étapes: la première correspondant au GeS₂ libre, la seconde au GeS₂ qui provient de la dissociation du composé. La première variation de poids commence vers 440°C, et a pratiquement cessé vers 570°C. Le palier qui suit, et qui correspond au composé pur, se maintient jusque vers 670°C. La seconde variation de poids cesse vers 750°C et le palier qui suit correspond à La₂S₃ pur.

D'après les variations de poids observées, la composition du composé ternaire est La_2S_3 . 1,48GeS₂: compte tenu de l'approximation de la méthode, nous en avons déduit que sa formule est $La_4Ge_3S_{12}$.

Nous remarquerons que le composé

Intensité relative	d (Å)	Indices hexagonaux	Intensité relative	d (Å)	Indices hexagonaux
3	5.62	3030	16	2.434	5162-4480
5	5.03	2131	1	2.360	2243
1	4.026	3141	5	2.286	4372
3	3.934	1012	1	2.241	6281-7180
20	(3.754	4041	5	2.164	6172
20	3.692	4130	1	2.118	6390
5	3.479	3251	4	2.069	3363
8	3.411	2132	6	2.016	6282
1	3.218	3360	2	1.993	7291
2	3.049	3142	3	1.945	6063
6	(2.947	4261	2	1.929	55Ī 0 0
0	2.919	4042	7	1.905	5273-5492
16	2.798	3232-6060	5	1.872	9090-8082
2	2.706	5270	7	1.843	73101
16	2.592	1123	2	1.792	3254
6	2.498	4262			

TABLEAU II

La₂GeS₅ qui existe également dans le système La₂S₃-GeS₂, ne se manifeste pas sur la courbe thermogravimétrique, même par un point d'inflexion, Nous reviendrons sur ce fait à propos de ce composé.

I. 2. Etude Cristallographique Préliminaire

Les diffractogrammes des composés $Ln_4Ge_3S_{12}$ sont très riches en raies (Tableua II). La détermination du réseau cristallin a été faite sur un cristal de $La_4Ge_3S_{12}$.

La structure est rhomboédrique. Les conditions systématiques auxquelles obéissent les réflexions observées sont: hhOl avec l pair. Le groupe spatial est donc $R\overline{3}c$ ou R3c.

En plaçant six masses formulaires $La_4Ge_3S_{12}$ dans la maille hexagonale équivalente, ou deux masses dans la maille rhomboédrique, la masse volumique est de 4.36 g cm⁻³ (densité mesurée: 4.29 g cm⁻³). Il est impossible d'obtenir une masse volumique convenable à partir de la formule $La_2Ge_2S_7$.

I. 3. Composés $Ln_4Ge_3S_{12}$ Isotypes

Six composés de ce type ont été isolés pour Ln = La-Gd (europium excepté). Leur couleur est toujours claire—La: jaune beige; Ge: brun jaune; Pr: vert clair; Nd: ocre rose; Sm: jaune grisâtre; Gd: burn clair.

Leurs paramètres ont été calculés par la méthode des moindres carrés (Tableau III). Tandis que a_h et c_h (en notation hexagonale) et a_r (en notation rhomoédrique) décroissent parallèlement à la contraction lanthanidique,

FIG. 2. Structure cristalline de $La_4Ge_3S_{12}$, vue en projection le long de l'axe c. Les atomes de germanium, qui ne sont pas représentés ici, sont au centre de tétraèdres de soufre. Les atomes de soufre d'un même tétraèdre sont hachurés parallèlement.

l'angle α du rhomboèdre est pratiquement constant, dans la limite des erreurs de mesure.

I. 4. Composés Ln₄Si₃S₁₂ Isotypes

A la suite de la publication des résultats précédents (1), Perez et Duale (7) ont décrit la famille isotype des dérivés correspondants dug silicium $Ln_4Si_3S_{12}$, du lanthane au gadolinium. Nous avons vérifié que ce type de combinaisons ne s'observe pas pour les éléments suivants.

I. 5. Etude Structurale

Les intensités des réflexions d'un cristal de $La_4Ge_3S_{12}$ ont été mesurées sur des

Terre rare	La	Ce	Pr	Nd	Sm	Gd
Notation hexagonale						
$a(\pm 0.02)$ (Å)	19.40	19.36	19.30	19.24	19.19	19.09
c (±0.01) (Å)	8.10	8.06	8.01	7.98	7.95	7.90
c/a	0.417	0.416	0.415	0.415	0.414	0.414
Notation rhomboédrique						
r(±0.02) (Å)	11.52	11.49	11.46	11.42	11.39	11.33
α (±12')	114°41′	114°43′	114°45′	114°44′	114°46′	114°46′
Masse volumique calculée g/cm ³	4.36	4.43	4.50	4.59	4.73	4.92

TABLEAU III Constantes Cristallines des Composés Ln4Ge3S12

TABLEAU IV

COORDONNÉES RELATIVES DES ATOMES DE La4Ge3S12

		x	У	. <i>z</i>
La(1)	6a	0.0000	0.0000	0.0000
La(2)	18 <i>b</i>	0.0030	0.2307	0.2028
Ge	18 <i>b</i>	0.2000	0.1875	0.1523
S(1)	18 <i>b</i>	0.1549	0.3789	0.1618
S(2)	18 <i>b</i>	0.1246	0.0643	0.2511
S(3)	18 <i>b</i>	0.1145	0.2005	0.9974
S(4)	18 <i>b</i>	0.3960	0.0593	0.1817

diagrammes de Weissenberg intégrés. La structure a été affinée sur 894 réflexions indépendantes, et la facteur R a pris finalement la valeur 0.065. Les paramètres atomiques sont donnés dans la Tableau IV. Tous les atomes sont dans les positions 18(b) du groupe R3c, sauf le lanthane La(1) qui se trouve en position particulière 6(a), sur l'axe ternaire (Mazurier (19)).

Cette structure a pour caractère essentiel la présence de groupements GeS_4 distincts les uns des autres. Il s'agit donc bien d'un orthothiogermanate, qu'il serait sans doute préférable d'écrire La₄[GeS₄]₃. Les atomes de germanium occupent le centre de tétraèdres de soufre sensiblement réguliers (distances Ge-S = 2.19-2.23 Å).

Les atomes de terres rares occupent deux sortes de sites. L'atome La(1) est au centre d'un prisme à base triangulaire d'atomes de soufre, auxquels s'ajoutent trois atomes de soufre dans le plan équatorial, en avant des faces latérales du prisme (tricapped trigonal prism). Les six liaisons échangées avec les six atomes situés aux sommets du prisme ont des longueurs très homogènes: 3×2.91 et 3×2.90 Å. Les trois liaisons équatoriales sont beaucoup plus longues, 3.37 Å. Ces prismes sont empilés les uns au-dessus des autres le long de l'axe ternaire, et forment ainsi une sorte de tunnel contenant les atomes La(1).

L'atome La(2) a un environnement beaucoup plus irrégulier. On peut encore l'assimiler à une prisme à base triangulaire très déformé et orienté parallèlement au plan de base de la maille hexagonale. Les longueurs des liaisons sont très disparates. Les six liaisons échangées avec les sommets du prisme sont comprises entre 2.86 et 3.08 Å (moyenne 2.97 Å); les trois liaisons échangées avec les trois atomes de soufre situés approximativement dans le plan équatorial du prisme valent 3.00, 3.52, et 3.73 Å. Les deux dernières sont nettement plus longues que celles qu'on observe dans l'environnement du lanthane par le soufre dans un grand nombre de composés. Elles ne constituent pas à notre avis de véritables liaisons.

Habituellement, dans ses sulfures, le lanthane a la coordinence 8.

La coordinence 9 de La(1), avec six liaisons "normales" et trois liaisons longues s'observe assez rarement. Nous en verrons un autre exemple dans le composé La_2GeS_5 . Pour l'atome La(2), la coordinence serait égale à 7, mais il faut noter que son environnement diffère peu du précédent, l'allongement de deux des distances (La-S) du plan équatorial du prisme conduisant à réduire la valeur apparente de la coordinence.

II. Composé La₂GeS₅

II. 1. Etude Préliminaire

En 1969, Perez (6) signale l'existence d'un composé de formule La_2GeS_5 , mais ne peut déterminer la nature du réseau faute de monocristaux.

Pour notre part, nous avons tout d'abord précisé les conditions de formation de cette phase. Rappelons que le composé La_2GeS_5 ne se manifeste pas sur les enregistrements thermogravimétriques, où seul le palier relatif à La₄Ge₃S₁₂ est observé. D'après le diagramme de phases de Sarkisov et al. (9), le composé La₂GeS₅ présente une fusion congruente à 1105°C. Nous avons constaté, à l'aide de recuits effectués à température constante, que cette phase n'est pas stable à basse température et se décompose en ses constituants au-dessous de 600°C. Le composé La2GeS5 n'est donc stable qu'audessus de 600°C, à condition toutefois de le maintenir en présence d'une contrepression suffisante de vapeur de GeS₂, ce qui a lieu

θ°

5.90

6.83

8.15

8.95

9.16

9.55

lorsqu'on opère dans une petite ampoule scellée. Dans ce cas, la dissociation

$$La_2GeS_5 \rightarrow La_2S_3 + GeS_{2va_3}$$

ne prend qu'une ampleur limitée en raison du volume de l'ampoule qui est petit relativement à la quantité de substance qu'elle contient.

Lorsqu'on opère sous vide, dans les conditions de la thermogravimétrie, la dissociation est totale au-dessous de la température de formation de cette phase, et, naturellement, la formation de La_2GeS_5 ne peut être décelée sur les courbes de thermogravimétrie.

Ce type de composé n'existe qu'avec le lanthane (8, 14). Cependant Beskrovnaja et al. (15) paraissent avoir obtenu des composés de même formule pour quelques terres rares suivantes. De la description uniquement qualitative qu'ils donnent des diagrammes de diffraction de rayons X, on peut déduire que seul le composé Ce₂GeS₅ serait isotype de La₂GeS₅. Les trois autres sont sans doute des mélanges.

Nous avons trouvé quelques monocristaux de La_2GeS_5 dans une préparation qui avait subi une fusion partielle et nous avons commencé leur étude par la méthode de précession de Buerger. Le réseau est monoclinique de paramètres:

$$a = 7.887 \pm 0.004 \text{ Å};$$
 $b = 7.675 \pm 0.004 \text{ Å};$
 $c = 12.720 \pm 0.008 \text{ Å};$ $\gamma = 101.40^{\circ} \pm 0.02$

La maille contient quatre masses formulaires La_2GeS_5 (d = 4.55 g cm⁻³).

II.2. Composés Isotypes Formés par le Silicium

Connaissant les constantes cristallines de La_2GeS_5 , les quatre composés isotypes obtenus dans la série du silicium Ln_2SiS_5 ont été décrits par Michelet et al. (8) (Tableau

10.12	4.384	5	112
11.38	3.904	44	112
11.82	3.760	75	020
12.00	3.705	57	013 . 201 . 103
12.33	3.607	54	021
12.80	3.477	20	Ī13 . Ī21
13.90	3,206	69	004 . 113 . 210
14.36	3.104)	11	211
14.88	3.000 /	11	220
15.21	2.936	12	Ž 21 . 014
15.61	2.864	34	203 . 212
15.88	2.815	46	Ž13 . 023 . 122
16.06	2.784	28	123
16.42	2.725	50	222
17.52	2.559	37	213
17.68	2.536	56	123 . 301
17.88	2.509	35	030
18.23	2.462	55	031 . 204 . 223
18.53	2.424	100	015.024.105 21
19.18	2.344	29	I32
19.38	2.321	16	Ž30 . 032
19.70	2.285	62	222 . 231
	<u></u>		

VI). Les paramètres a, b et c de la maille monoclinique décroissent parallèlement à la contraction lanthanidique, tandis qu'inversement l'angle γ croît légèrement, en restant voisin de 101.6°.

Paramètres	La ₂ GeS ₅	La ₂ SiS ₅	Ce ₂ SiS ₅	Pr ₂ SiS ₅	Nd_2SiS_5
a (Å)	7.887 ± 0.004	7.857 ± 0.004	7.798 ± 0.004	7.775 ± 0.004	7.740 ± 0.004
b (Å)	7.675 ± 0.004	7.606 ± 0.004	7.540 ± 0.004	7.514 ± 0.004	7.480 ± 0.004
c (Å)	12.720 ± 0.008	12.627 ± 0.008	12.524 ± 0.008	12.489 ± 0.008	12.434 ± 0.008
γ(°)	101.40 ± 0.02	101.55 ± 0.02	101.60 ± 0.02	101.62 ± 0.02	101.66 ± 0.02

TABLEAU V

Lecture du Diffractogramme de La₂GeS₅ Monoclinique. Rayonnement $K\alpha$ du Cuivre

Inten-

sités

relatives

8

4

4

12

2

7

Indices

010

011

Ī11

102

012

111

4

d

7.49

6.47

5.43

4.951

4.836

4.643

TABLEAU VI Paramètres des Dérivés Monocliniques Appartenant au Type Ln_2GeS_5

TABLEAU VII Positions Atomiques de La ₂ GeS ₅							
	<i>x</i>	y	Z				
La(1)	0.0419	0.2395	0.0935				
La(2)	0.3649	0.8401	0.1667				
Ge	0.5912	0.3380	0.1165				
S (1)	0.3815	0.1706	0.0259				
S(2)	0.5004	0.8613	0.3790				
S(3)	0.2163	0.5784	0.0061				
S(4)	0.6977	0.1287	0.2051				
SCS	0.5474	0.5349	0.2326				

II.3. Etude Structurale

Un cristal de La₂GeS₅ a été étudié par des clichés de Weissenberg et de précession. Les réflexions observées: hk0 pour h = 2net 00*l* pour l = 2n, sont caractéristiques du groupe $P2_1/a$.

La structure a été affinée sur 745 réflexions indépendantes, le facteur R prenant la valeur finale 0.038 (Mazurier (18)).

Les atomes de lanthane sont situés à l'intérieur de prismes à base triangulaire de soufre, contenant de plus, dans leur plan équatorial, des atomes de soufre supplémentaires en avant des faces latérales. Pour La(1) les distances du lanthane aux six sommets du prisme sont peu homogènes, et sont comprises entre 2.91 et 3.15 Å, avec une valeur moyenne de 2.98 Å. Les deux atomes de soufre du plan équatorial se trouvent à des distances normales, 3.03 et 2.83 Å, alors qu'habituellement, dans ce type d'environnement ces distances sont plus longues. Pour La(2), les distances du lanthane aux six sommets du prisme sont comprises entre 2.90 et 3.12 Å, avec une moyenne de 3.01 Å. Dans le plan équatorial se trouvent trois atomes de soufre à 3.17, 3.22, et 3.32 Å. On peut déduire de ces distances que les coordinences des deux atomes de lanthane ont ici pour valeurs 8 ou 9.

Comme dans la précédente structure, les atomes de germanium sont au centre de tétraèdres de soufre déformés, et forment des groupements bien différenciés (GeS₄). Les distances Ge-S sont très homogènes et vont de 2.17 à 2.25 Å, avec une valeur moyenne

FIG. 3. Structure cristalline de La_2GeS_5 , vue en projection le long de l'axe *a*.

de 2.21 Å, ce qui est très précisément la valeur trouvée dans les tétraèdres de la famille précédente. Dans cette structure, les atomes de soufre ne participent pas tous à la formation de ces tétraèdres. On serait donc tenté de considérer cette structure comme un ortho-thiogermanate d'un groupement "thionique" $[La_2S]$.

En réalité, les atomes de lanthane appartiennent à des feuillets de formule [LaS], disposés parallèlement aux axes b et c (Fig. 3). Dans ces feuillets, chaque atome de soufre est entouré par un tétraèdre très déforme de lanthane. Chaque pseudotétraèdre [SLa₄] partage chacun de ses sommets avec quatre pseudotétraèdres voisins, de façon à réaliser une disposition grossièrement hexagonale (Fig. 4), qui rappelle celle qui a été décrite pour les composés de type SmSI où elle est tout à fait régulière (Savigny, Laruelle, et Flahaut (21)). L'existence de tels feuillets LnS est extrêmement fréquente dans les composés à deux anions des terres rares (voir par exemple les halogénochalcogénures décrits par Dagron et Thevet (22)). Ainsi la structure de La₂GeS₅

FIG. 4. Feuillets pseudohexagonaux formés par les pseudotétraèdres [SLa₄] de La₂GeS₅, et feuillets réguliers équivalents observés dans SmSI, vus en projection.

peut être rattachée au groupe des dérivés ternaires des terres rares à deux anions, les deux anions étant ici S^{2-} et $[GeS_4]^{4-}$.

Finalement, cette structure résulte de l'alternance des feuillets [LaS] et de couches de tétraèdres GeS₄. Chaque tétraèdre partage un de ses sommets avec un feuillet [LaS], deux tétraèdres GeS₄ voisins étant alternativement liés avec le feuillet supérieur et la feuillet inférieur.

III. Composés Ln₆Ge_{2.5}S₁₄

III.1. Etude Préliminaire

La définition expérimentale de la composition de ces phases a été particulièrement difficile, en raison d'une part de leur formule inhabituelle, d'autre part de l'existence de domaines d'homogénéité à l'intérieur des ternaires Ln-Ge-S, qui s'étendent comme nous l'avons constaté, de la composition $Ln_6Ge_{2.5}S_{14}$ où tout le germanium est tétravalent à la composition $Ln_6Ge_3S_{14}$ où un atome de germanium sur trois devient divalent.

Pour établir cette formule, nous avons tout d'abord entrepris l'étude thermogravimétrique d'un produit de composition globale $Dy_2Ge_2S_7$. Il apparaît entre 560 et $625^{\circ}C$ un premier palier suivi d'une perte de l'équivalent de 0.84 molè de GeS_2 et à partir de 770°C un second palier correspondant à Dy_2S_3 pur. En fin d'opération, la nacelle contient l'équivalent de 1.02 *M* de Dy_2S_3 .

La même expérience effectuée avec le dérivé du gadolinium nous a conduits à un résultat identique, le palier correspondant au composé intermédiaire étant situé entre 650 et 700°C.

Dans les deux essais, la formule du composé recherché pouvait s'écrire $Ln_2Ge_{0.83}S_{4.66}$ soit encore $Ln_6Ge_{2.49}S_{13.98}$. Cette dernière formule était très proche de la réalité, mais comme nous pensions initialement à une formule simple, nous avons retenu provisoirement la formule Ln_2GeS_5 .

III.2. Etude Cristallographique Préliminaire

Un cristal, prélevé dans une masse de Dy_2GeS_5 a été étudié par des clichés de Weissenberg et de précession de Buerger.

Le réseau est hexagonal, de paramètres: a = 9.73 Å, c = 5.82Å.

Les seules extinctions systématiques sont 00/ pour l'impair. Elles sont caractéristiques des groupes spatiaux $P6_3/m$ et $P6_3$.

La masse volumique calculée (5.83 g cm⁻³) en plaçant trois formules Dy_2GeS_5 par maille ne concorde pas avec la densité mesurée (5.54 g cm⁻³), confirmant ainsi que la formule provisoire ne pouvait convenir.

C'est alors que de Saint-Giniez, Laruelle et Flahaut (2) ont décrit la structure d'un composé formé entre le sulfure d'aluminium et le sulfure de cérium, et que nous considérions comme étant isotype de notre dérivé du germanium (même diffractogramme, mêmes diagrammes de Weissenberg). L'étude structurale conduisait à la composition $Ce_6Al_{10/3}S_{14}$ soit plus précisément: $Ce_6(Al_{4/3}$ $\Box_{2/3})Al_2S_{14}$.

Comme l'a montré un vaste ensemble de recherches cristallographiques effectué à la suite de cette première structure, tous ces composés se rattachent à la même formule cristallographique $A_6B_2C_2X_{14}$ (23), dans laquelle le site B peut être totalement ou partiellement occupé. Dans le cas de $Ce_6Al_{10/3}S_{14}$ les atomes d'aluminium se répartissent sur les deux séries de sites B et C. Les sites C, sur les axes ternaires, sont situés à l'intérieur de tétraèdres d'atomes de soufre. Ils sont totalement remplis. Les sites B, sur les axes sénaires, sont situés à l'intérieur d'octaèdres de soufre, mais le métal s'y trouve plus proche de trois des atomes de soufre que des trois autres. Ces sites sont partiellement occupés par les atomes d'aluminium (Fig. 5). Dans le cas de $Ce_6Al_{10/3}S_{14}$, cette occupation des sites B est désordonnée, car aucune raie de surstructure n'apparaît dans les diagrammes de monocristaux. Nous avons admis que le dérivé du germanium possédait une structure analogue à la précédente, mais avec une occupation différente du site octaèdrique pour respecter l'équilibre des charges (Michelet et Flahaut (4)):

 $Dy_6(Ge_{0.5}^{IV} \square_{1.5})Ge_2S_{14}$, soit $Dy_6Ge_{2.5}S_{14}$.

La masse volumique calculée en plaçant une formule par maille a alors une valeur convenable (5.59 g cm^{-3}) .

FIG. 5. Structure cristalline du sous-réseau hexagonal de $Nd_6Ge_{2.5}S_{14}$.

Cette conclusion a été suivie de la description de nombreux composés isotypes $Ln_6(M \Box) Ge_2S_{14}$ où M est un élément divalent (Mg, V^{II}, Cr^{II}, Mn^{II}, Fe^{II}, Ni^{II}, Co^{II}) (Michelet et Flahaut (10)) et dont la structure a été établie par Collin et Laruelle (12)) sur un cristal de La₆MnSi₂S₁₄. Elle a permis d'expliquer le domaine d'homogénéité signalé plus haut, les composés

TABLEAU VIII

LECTURE D'UN DIFFRACTOGRAMME DE Dy6Ge2.5S14

Intensités

17

35

19

18

20

13

12

24

18

59

42

36

35

32

17

9

21

9

25

100

Indices

101

200

111

201

210 002

211

102

301

112

220

202

310

311

212

400

302

401

320

222

d (Å)

4.843

4.226

3.763

3.439

3.195

2.919

2.797

2.747

2.527

2.497

2.433

2.391

2.337

2.168

2.145

2.110

2.022

1.987

1.945

1.877

0

9.15

10.50

11.81

12.94 13.95

15.30

15.98

16.28

17.74

17.96

18.45

18.79

19.24

20.81

21.04

21.41

22.39

22.80

23.33

24.23

$Ln_6(Ge^{II} \Box)Ge_2^{IV}S_{14}$	se	rattachant	à	ce	nouv-
eau groupe.					

Par ailleurs, un cliché d'oscillation de $Dy_6Ge_{2.5}S_{14}$ suffisamment exposé a fait apparaître des strates intermédiaires dont les réflexions étaient beaucoup plus faibles que celles des strates déjà observées. Il existait donc, dans ce cas, une *surstructure* liée très probablement à la mise en ordre des atomes de germanium sur les sites octa-édriques B.

III.3. Composés Isotypes

Nous avons obtenus neuf composés de ce type répondant à la composition $Ln_6Ge_{2.5}S_{14}$, pour Ln = Ce à Ho et pour l'yttrium. Il ne semble pas que le dérivé du lanthane existe, tandis que le composé $La_6Ge_3S_{14}$ a été obtenu. On remarque la constance du paramètre c, égal à 5.82 Å pour tous les termes de cette famille (Tableau IX).

Avec le silicium quatre composés de ce type ont été obtenus avec le gadolinium, le terbium, le dysprosium et l'yttrium. Dans ce cas également, le paramètre c est constant et égal à 5.70 Å.

TABLEAU IX

Constantes Cristallines des Composés Hexagonaux de Type $Dy_6Ge_{2.5}S_{14}$ (Paramètres du Sous-Reséau)

	a (Å)	c (Å)	c/a	d (g/cm ³)
(a) Famill	e Ln ₆ Ge _{2.5} S	B ₁₄		
Ce	10.22	5.83	0.570	4.63
Pr	10.13	5.82	0.575	4.74
Nd	10.05	5.82	0.579	4.89
Sm	9.94	5.82	0.585	5.12
Gd	9.84	5.82	0.591	5.36
Tb	9.79	5.82	0.594	5.45
Dy	9.73	5.82	0.599	5.59
Ho	9.69	5.83	0.601	5.68
Y	9.73	6.82	0.599	4.04
(b) Famill	e Ln ₆ Si _{2.5} S ₁	14		
Gd	9.87	5.71	0.578	5.04
Тb	9.82	5.70	0.580	5.14
Dy	9.755	5.70	0.584	5.28
Y	9.75	5.70	0.585	3.73

FIG. 6. Surstructure hexagonale de Dy₆Ge_{2.5}S₁₄. On ne représente que la mise en ordre des atomes de germanium sur les sites octaédriques B de la formule $Ln_6B_2C_2X_{14}$. O, Ge^{IV}; \Box , lacunes.

III.4. Etude Structurale

Elle a été effectuée sur un monocristal de $Dy_6Ge_{2.5}S_{14}$. Dans un premier temps, les positions des atomes dans le sous-réseau ont été déterminées, en négligeant les réflexions de surstructure.

On admet pour cela que le sous-réseau, de groupe spatial $P6_3$, est isotype de Ce₆Al_{10/3}S₁₄, et que le demi-atome de germanium occupe de façon désordonnée les sites B lacunaires de L₆B₂C₂X₁₄. Puis les réflexions de surstructure ont été indroduites pour définir la structure complémentaire provenant de la mise en ordre des atomes de germanium sur les sites B.

Détermination de la sous-structure.

En utilisant les intensités de 247 réflexions indépendantes, intégrées sur des clichés de précession, le facteur d'incertitude est arrivé à 0.067 en fin d'affinement. Les coordonnées trouvées (Tableau X) conduisent aux distances interatomiques suivantes: dans le tétraèdre C:

 $1Ge(1)-S(3)=2.07 \text{ Å}; \quad 3Ge(1)-S(2)=2.22 \text{ Å};$

dans l'octaédre B:

 $3Ge(2)-S(1)=2.59 \text{ Å}; \quad 3Ge(2)-S(1)=2.63 \text{ Å}.$

Le tétraèdre GeS₄ présente une liaison Ge-S (parallèle à l'axe ternaire) nettement plus courte que les trois autres, anomalie qui est observée dans tous les composés $Ln_6B_2C_2X_{14}$ étudiés. L'environnement octaétrique régulier du Ge(2) est plus inhabituel; en effet les distances Ge-S sont très supérieures aux distances habituellement admises. Il est très probable qu'il ne s'agit là que d'une moyenne, et que l'atome de germanium est décentré à l'intérieur de cet octaèdre, le long de l'axe sénaire, de façon à se rapprocher de trois des atomes de soufre, et à s'éloigner des trois autres, en réalisant ainsi une coordination inférieure à six. Un semblable déplacement a été observé dans tous les composés de la famille $Ln_6B_2C_2X_{14}$, lorsque l'élément qui se place dans le site B est normalement tri ou tétracoordonné dans ses combinaisons soufrées: c'est la cas de l'aluminium dans $Ce_6Al_{10/3}S_{14}$ (2) et du cuivre dans $La_6Cu_2Si_2S_{14}$ (13).

L'atome de dysprosium est entouré de sept atomes de soufre situés à des distances comprises entre 2.72 et 3.06 Å, ce qui correspond à une valeur moyenne de 2.86 Å. Une huitième liaison beaucoup plus longue (3.55 Å) ne peut être incluse dans le polyèdre

TABLEAU X

POSITIONS ATOMIQUES	de Dy ₆ C	6e _{2.5} S ₁₄ , Eva	LUÉES DANS	LE R	LÉSEAU	Hexagonal	DE	SURSTRUCTURE
---------------------	----------------------	---	------------	------	--------	-----------	----	--------------

Atomes	Positions	x	У	z	<i>B</i> en Å ²
Dy	6c	0.359	0.140	0.250	
S(1)	6c	0.251	0.100	0.818	0.923
S(2)	6c	0.523	0.427	0.504	0.687
S(3)	2b	1/3	2/3	0.531	0.062
Ge(1)	26	1/3	2/3	0.175	0.486
0.5 Ge(2)	$\overline{2a}$	0	0	0.047	0.385

de coordination du dysprosium. Cet environnement peut être décrit comme une prisme à base triangulaire de soufre, contenant un atome de plus dans le plan équatorial, en avant de l'une des faces latérales, environnement tout à fait identique à ceux des atomes de lanthane dans les deux structures précédentes.

Etude de la surstructure. La maille de surstructure est hexagonale avec les paramètres suivants:

$$a' = a\sqrt{3}, \qquad c' = 2c,$$

d'où le volume V' = 6 V.

Elle contient donc trois formules $La_{12}Ge_{5}$ - S_{28} .

Les réflexions de surstructure ont été introduites pour définir la structure complémentaire, en admettant que celle-ci provient de la mise en ordre des atomes de germanium sur le site B, à raison de trois atomes pour les 12 sites B de la maille de surstructure. On a observé un accord convenable entre les facteurs de structure observés et calculés, pour les positions suivantes: 000, 1/3 2/3 0.5, 2/3 1/3 0.5. Cette répartition correspond à la symétrie du groupe spatial P6 (Collin (20)).

Les atomes de germanium ont des facteurs d'agitation thermique élevés et leurs coordonnées z correspondent à des valeurs moyennes. Dans l'état actuel des méthodes cristallographiques, la détermination des valeurs exactes de z est impossible en raison de la faible intensité relative des réflexions de surstructure.

Parallèlement à cette étude, plusieurs composés isotypes des précédents ont été préparés au laboratoire, notamment $La_6(Sn_{1/2} \square _{3/2})Si_2S_{14}$ dans lequel l'atome en position octaédrique est suffisamment lourd pour permettre une étude structurale précise (Collin (13)). Les atomes d'étain et les lacunes présentent alors la même répartition que le germanium et les lacunes, selon l'hypothèse retenue pour $Dy_6(Ge_{1/2}^{IV} \square _{3/2})$ - Ge_2S_{14} .

Dans les composés $Ln_6B_2C_2X_{14}$, les atomes B sont dans des octaèdres qui forment des chaînes le long de l'axe c, et dans lesquelles deux octaèdres successifs mettent en commun une face triangulaire de soufre. Tous les octaèdres sont occupés par les atomes B; en conséquence tous les atomes de soufre du réseau appartiennent à l'ensemble des octaèdres et des tétraèdres, et les cations Ln³⁺ font le lien entre les files d'octaèdres de formules moyenne [BX₃] et les tétraèdres [CX₄]. Au contraire, dans les composés $Ln_6Ge_{2.5}S_{14}$, un octaèdre sur quatre est occupé périodiquement par un atome de germanium. En conséquence, les octaèdres $[GeS_6]$ ne partagent plus leurs faces deux à deux et sont indépendants les uns des autres. Par ailleurs, les atomes de soufre qui délimitent les octaèdres vides [$\Box S_6$] peuvent être considéré comme des anions indépendants. On peut donc considérer que dans cette structure existent, en face de 12 cations Ln^{3+} , quatre tétraèdres indépendants [GeS₄], un octaèdre indépendant $[GeS_6]$ et six ions soufre indépendants.

IV. Conclusion

On note, dans ces trois structures, la localisation des atomes de germanium (et des atomes de silicium dans les composés isotypes que forme ce dernier élément) à l'intérieur de tétraèdres de soufre indépendants les uns des autres. On ne retrouve pas ici de tendance à l'enchaînement des tétraèdres, comme on l'observe dans les thiogermanates et thiosilicates des éléments alcalins. Parmi les trois types structuraux observés, l'un, $La_4Ge_3S_{12}$, est un orthothiogermanate simple faisant intervenir des ions Ln³⁺ en face des groupements GeS₄. L'autre, La₂GeS₅, est un orthothiogermanate d'un groupement thionique [LaS] bidimensionnel. Dans le troisième, Dy₆Ge_{2.5}S₁₄, les atomes de germanium appartiennent à des tétraèdres GeS₄ indépendants et à des octaèdres indépendants, entre lesquels se trouvent des anions S^{2-} et des cations Ln³⁺.

Les atomes de terre rare possèdent des environnements sensiblement analogues dans les trois cas, formés typiquement de prismes triangulaires plus ou moins réguliers, présentant deux ou trois atomes de soufre supplémentaires dans le plan équatorial en avant des faces latérales du prisme mais souvent à des distances telles qu'il est difficile d'envisager une liaison: la coordinence de la terre rare varie ainsi de 7 à 9 suivant les cas.

Références

- I. A. MICHELET, P. LARUELLE, ET J. FLAHAUT, Compt. Rend. 262 C, 753 (1966).
- 5. D. DE SAINT-GINIEZ, P. LARUELLE, ET J. FLAHAUT, Compt. Rend. 267 C, 1029 (1968).
- 3. E. S. SARKISOV, R. A. LIDIN, ET YU. M. KHOZ-HAINOV, Izvest. Akad. Nauk. S.S.S.R. Neorg. Mater. 4, 2033 (1968).
- 4. A. MICHELET ET J. FLAHAUT, Comp. Rend. 268 C, 326 (1969).
- 5. M. PATRIE ET M. GUITTARD, Comp. Rend. 268 C, 1136 (1969).
- 6. G. PEREZ, Thèse de Doctorat ès Sciences, Bordeaux 1969.
- 7. G. PEREZ ET M. DUALE, Comp. Rend. 269 C, 984 (1969).
- A. MICHELET, G. PEREZ, J. ETIENNE, ET M. DARRIET-DUALE, Comp. Rend. 271 C, 513 (1970).
- 9. E. S. SARKISOV, R. A. LIDIN, ET V. V. SHUM, Izvest. Akad. Nauk. S.S.S.R. Neorg. Mater. 6, 2054 (1970).
- 10. A. MICHELET ET J. FLAHAUT, Compt. Rend. 269 C, 1203 (1969).

- J. FLAHAUT ET P. LARUELLE, in "The Chemistry of Extended Defects in Non-Metallic Solids," p. 109. North Holland Publishing Company, 1970.
- 12. G. COLLIN ET P. LARUELLE, Compt. Rend. 270 C, 410 (1970).
- G. COLLIN, Thèse de Doctorat ès-Sciences, Paris, 1971.
- 14. A. MICHELET, Thèse de Doctorat ès-Sciences, Paris, 1972.
- R. A. BESKROVNAJA, G. N. KUSTOVA, ET V. V. SEREBRENNIKOV-IZVEST, Akad. Nauk. SSSR., Neorg. Mater 7, 1078 (1971).
- 16. C. DAGRON, à paraître.
- 17. G. COLLIN ET P. LARUELLE, Bull. Soc. Franc. Minéral. Crist. 94, 175 (1971).
- A. MAZURIER ET J. ETIENNE, Acta Cryst. B29, 817 (1973).
- 19. A. MAZURIER ET J. ETIÈNNE, Acta Cryst. B30, 752 (1974).
- 20. G. COLLIN, J. ETIENNE, ET P. LARUELLE, Bull. Soc. Franc. Minéral. Crist. 96, 12 (1973).
- 21. N. SAVIGNY, P. LARUELLE, ET J. FLAHAUT, Acta Cryst. **B29**, 345 (1973).
- 22. C. DAGRON ET F. THEVET, Ann. Chim. 6, 67 (1971).
- G. COLLIN, J. ETIENNE, J. FLAHAUT, M. GUITTARD, ET P. LARUELLE, *Rev. Chim. Mineral.* 10, 225 (1973).